Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Simon Aldridge,* Deborah Coombs and Cameron Jones

Department of Chemistry, Cardiff University, PO Box 912, Park Place, Cardiff CF10 3TB, Wales

Correspondence e-mail: aldridges@cf.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
H -atom completeness 89%
Disorder in solvent or counterion
R factor $=0.032$
$w R$ factor $=0.071$
Data-to-parameter ratio $=20.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bromohydridobis(triphenylphosphine)platinum toluene hemisolvate

In the crystal structure of $\left[\mathrm{PtBrH}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8}$, the Pt atom has a distorted square-planar environment, with the coordination sphere comprising hydride, bromide and mutually trans triphenylphosphine ligands.

Comment

The title complex, trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Br}$, initially reported by Carr et al. (1985), was prepared in this case by hydrolysis of the platinum(II) boryl complex trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}[\mathrm{B}(\mathrm{Mes}) \mathrm{Br}] \mathrm{Br}$ $\left(\right.$ Mes $\left.=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)($ Coombs \& Aldridge, 2003 $)$.

(I)

The crystal structure of trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Br} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, (I), at 150 K consists of discrete molecular units. The Pt atom has a distorted square-planar environment [sum of angles at Pt $\left.=360(4)^{\circ}\right]$ and a coordination sphere comprising hydride, bromide and mutually trans triphenylphosphine ligands. The $\mathrm{Pt}-\mathrm{P}[$ mean 2.278 (1) \AA] and $\mathrm{Pt}-\mathrm{Br}[2.535$ (1) \AA] distances are within the expected ranges for similar platinum(II) complexes (Owston et al., 1960; Bender et al., 1984), and the bending of the $\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2$ angle from linearity [172.73 (3) ${ }^{\circ}$] presumably reflects the differing steric requirements of the bromide and hydride ligands. The $\mathrm{Pt}-\mathrm{H}$ distance is among the shortest reported to date, being significantly shorter than that found in trans- $\left({ }^{i} \operatorname{Pr}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Cl}(1.846 \AA$; Robertson et al., 1986), although comparable to that reported for the triazacyclononane complex $\left[(\mathrm{tacn}) \mathrm{PtMe}_{2} \mathrm{H}\right]^{+}(1.380 \AA$ A Prokopchuk et al., 1999).

Experimental

The title compound was prepared by the hydrolysis of a toluene solution of trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}[\mathrm{B}(\mathrm{Mes}) \mathrm{Br}] \mathrm{Br}$ on exposure to air. A solution containing $137 \mathrm{mg}(0.13 \mathrm{mmol})$ of trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}-$ $[\mathrm{B}(\mathrm{Mes}) \mathrm{Br}] \mathrm{Br}$ in ca 10 ml of toluene was exposed to air for a period of 9 d , at which point monitoring of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR revealed that the sole phosphorus-containing product in solution was trans- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Br}$. Removal of solvent in vacuo and recrystallization from toluene/hexane (50:50) led to the isolation of the title compound as colourless crystals suitable for X-ray diffraction. Further synthetic details are recorded in the CIF.

Received 19 June 2003

Accepted 7 July 2003
Online 17 July 2003

Crystal data

$\left[\mathrm{PtBrH}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8}$
$M_{r}=846.61$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.514$ (2) A
$b=13.447$ (3) \AA
$c=22.449$ (5) \AA
$\beta=97.01$ (3) ${ }^{\circ}$
$V=3449.8(12) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.325, T_{\text {max }}=0.461$
55828 measured reflections
7893 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.071$
$S=1.02$
7893 reflections
386 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.630 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 55096
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=5.35 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Prism, colourless
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

6645 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.083$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-17 \rightarrow 17$
$l=-29 \rightarrow 29$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0246 P)^{2}\right. \\
& +8.05 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.08 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{\AA^{-3}} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00126 \text { (7) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{P} 2$	$2.2749(12)$	$\mathrm{Pt} 1-\mathrm{Br} 1$	$2.5347(8)$
$\mathrm{Pt} 1-\mathrm{P} 1$	$2.2805(12)$	$\mathrm{Pt} 1-\mathrm{H} 99$	$1.38(6)$
			$88(2)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1$	$172.73(3)$	$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{H} 99$	$85(2)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{Br} 1$	$92.10(3)$	$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{H} 99$	$177(2)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{Br} 1$	$94.57(3)$	$\mathrm{Br} 1-\mathrm{Pt} 1-\mathrm{H} 99$	177

The H atom, H99, attached to the Pt 1 centre was located in a difference Fourier synthesis and refined isotropically with no restraints. Phenyl H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.95 \AA$) and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. A disordered molecule of toluene was found in the crystal lattice, residing on a center of symmetry (0.5 molecule per asymmetric unit). The disorder was successfully modelled and atoms C37-C41 were refined isotropically without attached H atoms. The maximum elec-tron-density peak is located near the Pt 1 atom.

Data collection: COLLECT (Hooft, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction:

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. The H atoms of the triphenylphosphine ligands have been omitted for clarity.

DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The support of the EPSRC, the Royal Society and Cardiff University are gratefully acknowledged.

References

Bender, R., Braunstein, P., Jud, J.-M. \& Dusausoy, Y. (1984). Inorg. Chem. 23, 4489-4502.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Carr, S. W., Shaw, B. L. \& Thornton-Pett, M. (1985). J. Chem. Soc. Dalton Trans. pp. 2131-2137.
Coombs, D. L. \& Aldridge, S. (2003). In preparation.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hooft, R. W. W. (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Owston, P. G., Partridge, J. M. \& Rowe, J. M. (1960). Acta Cryst. 13, 246-252.
Prokopchuk, E. M., Jenkins, H. A. \& Puddephatt, R. J. (1999). Organometallics, 18, 2861-2866.
Robertson, G. B., Tucker, P. A. \& Wickramasinghe, W. A. (1986). Aust. J. Chem. 39, 1495-1507.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

