metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Simon Aldridge,* Deborah Coombs and Cameron Jones

Department of Chemistry, Cardiff University, PO Box 912, Park Place, Cardiff CF10 3TB, Wales

Correspondence e-mail: aldridges@cf.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ H-atom completeness 89% Disorder in solvent or counterion R factor = 0.032 wR factor = 0.071 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Bromohydridobis(triphenylphosphine)platinum toluene hemisolvate

In the crystal structure of $[PtBrH(C_{18}H_{15}P)_2] \cdot 0.5C_7H_8$, the Pt atom has a distorted square-planar environment, with the coordination sphere comprising hydride, bromide and mutually *trans* triphenylphosphine ligands.

Received 19 June 2003 Accepted 7 July 2003 Online 17 July 2003

Comment

The title complex, *trans*- $(Ph_3P)_2Pt(H)Br$, initially reported by Carr *et al.* (1985), was prepared in this case by hydrolysis of the platinum(II) boryl complex *trans*- $(Ph_3P)_2Pt[B(Mes)Br]Br$ (Mes = 2,4,6-Me₃C₆H₂) (Coombs & Aldridge, 2003).

The crystal structure of *trans*-(Ph₃P)₂Pt(H)Br·0.5C₆H₅CH₃, (I), at 150 K consists of discrete molecular units. The Pt atom has a distorted square-planar environment [sum of angles at Pt = $360 (4)^{\circ}$] and a coordination sphere comprising hydride, bromide and mutually trans triphenylphosphine ligands. The Pt-P [mean 2.278 (1) Å] and Pt-Br [2.535 (1) Å] distances are within the expected ranges for similar platinum(II) complexes (Owston et al., 1960; Bender et al., 1984), and the bending of the P1–Pt1–P2 angle from linearity $[172.73 (3)^{\circ}]$ presumably reflects the differing steric requirements of the bromide and hydride ligands. The Pt-H distance is among the shortest reported to date, being significantly shorter than that found in trans-(ⁱPr₃P)₂Pt(H)Cl (1.846 Å; Robertson et al., 1986), although comparable to that reported for the triazacyclononane complex $[(tacn)PtMe_2H]^+$ (1.380 Å; Prokopchuk et al., 1999).

Experimental

The title compound was prepared by the hydrolysis of a toluene solution of *trans*-(Ph₃P)₂Pt[B(Mes)Br]Br on exposure to air. A solution containing 137 mg (0.13 mmol) of *trans*-(Ph₃P)₂Pt-[B(Mes)Br]Br in *ca* 10 ml of toluene was exposed to air for a period of 9 d, at which point monitoring of the reaction mixture by ³¹P NMR revealed that the sole phosphorus-containing product in solution was *trans*-(Ph₃P)₂Pt(H)Br. Removal of solvent *in vacuo* and recrystallization from toluene/hexane (50:50) led to the isolation of the title compound as colourless crystals suitable for X-ray diffraction. Further synthetic details are recorded in the CIF.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $[PtBrH(C_{18}H_{15}P)_2] \cdot 0.5C_7H_8$ $M_r = 846.61$ Monoclinic, $P2_1/c$ a = 11.514 (2) Å b = 13.447 (3) Å c = 22.449 (5) Å $\beta = 97.01$ (3)° V = 3449.8 (12) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{min} = 0.325, T_{max} = 0.461$ 55 828 measured reflections 7893 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0246P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 8.05P
$wR(F^2) = 0.071$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
7893 reflections	$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
386 parameters	$\Delta \rho_{\rm min} = -0.97 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.00126 (7)
refinement	

 $D_x = 1.630 \text{ Mg m}^-$

Cell parameters from 55 096

Mo $K\alpha$ radiation

reflections

 $\mu = 5.35 \text{ mm}^{-1}$

T = 150 (2) K

 $R_{\rm int} = 0.083$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -14 \rightarrow 14$

 $k = -17 \rightarrow 17$

 $l = -29 \rightarrow 29$

Prism. colourless

 $0.20 \times 0.20 \times 0.15 \text{ mm}$

6645 reflections with $I > 2\sigma(I)$

 $\theta = 2.9 - 27.5^{\circ}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Pt1-P2	2.2749 (12)	Pt1-Br1	2.5347 (8)
Pt1-P1	2.2805 (12)	Pt1-H99	1.38 (6)
P2-Pt1-P1	172.73 (3)	P2-Pt1-H99	88 (2)
P2-Pt1-Br1	92.10 (3)	P1-Pt1-H99	85 (2)
P1-Pt1-Br1	94.57 (3)	Br1-Pt1-H99	177 (2)

The H atom, H99, attached to the Pt1 centre was located in a difference Fourier synthesis and refined isotropically with no restraints. Phenyl H atoms were placed in idealized positions (C–H = 0.95 Å) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. A disordered molecule of toluene was found in the crystal lattice, residing on a center of symmetry (0.5 molecule per asymmetric unit). The disorder was successfully modelled and atoms C37–C41 were refined isotropically without attached H atoms. The maximum electron-density peak is located near the Pt1 atom.

Data collection: COLLECT (Hooft, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction:

Figure 1

View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. The H atoms of the triphenylphosphine ligands have been omitted for clarity.

DENZO–SMN; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The support of the EPSRC, the Royal Society and Cardiff University are gratefully acknowledged.

References

- Bender, R., Braunstein, P., Jud, J.-M. & Dusausoy, Y. (1984). Inorg. Chem. 23, 4489–4502.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Carr, S. W., Shaw, B. L. & Thornton-Pett, M. (1985). J. Chem. Soc. Dalton Trans. pp. 2131–2137.
- Coombs, D. L. & Aldridge, S. (2003). In preparation.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Owston, P. G., Partridge, J. M. & Rowe, J. M. (1960). Acta Cryst. 13, 246–252. Prokopchuk, E. M., Jenkins, H. A. & Puddephatt, R. J. (1999). Organo-
- metallics, **18**, 2861–2866.
- Robertson, G. B., Tucker, P. A. & Wickramasinghe, W. A. (1986). Aust. J. Chem. 39, 1495–1507.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.